22^2+50^2=c^2

Simple and best practice solution for 22^2+50^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 22^2+50^2=c^2 equation:



22^2+50^2=c^2
We move all terms to the left:
22^2+50^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+2984=0
a = -1; b = 0; c = +2984;
Δ = b2-4ac
Δ = 02-4·(-1)·2984
Δ = 11936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11936}=\sqrt{16*746}=\sqrt{16}*\sqrt{746}=4\sqrt{746}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{746}}{2*-1}=\frac{0-4\sqrt{746}}{-2} =-\frac{4\sqrt{746}}{-2} =-\frac{2\sqrt{746}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{746}}{2*-1}=\frac{0+4\sqrt{746}}{-2} =\frac{4\sqrt{746}}{-2} =\frac{2\sqrt{746}}{-1} $

See similar equations:

| 8s-(5s+6)=1/2(20+65 | | -5(x+2)-7=2x-38 | | ​j=1​∑​3​​(3j) | | 2x+(1/x)=4 | | X³-3x²+3=0 | | 3x-3=-2x+10 | | 7/60=5/20w+11/12 | | (1/2x+3)+(1/x-1)=1/(2x+3)(x-1) | | 14^2+b^2=50^2 | | -7-14z=24 | | 2a–10–3a+18–4a=6–9a+a+2+3a | | 10/3=2x | | M^2-13=3p | | 2x+5x-9=8x-x3-6 | | 46+5x=6 | | 2x+31/4x=12x+51/2x | | -4(t-2)+7t=5t-4 | | 1=k/7-2 | | X+31=5x+9 | | (x-2)^2-4=12 | | -19c+2=-21 | | 4y+15=2y+35 | | 7=y+95 | | 15-2x+8x=5(9+x)+3x | | 5x-8x+10=-20 | | 5w/8=25 | | x/3+5=-9 | | 5^6x-3=25 | | 38-7x=-11 | | 6x+4=6(x+3) | | -.25x=-4 | | 7=-2+2x-3 |

Equations solver categories